Telegram Group & Telegram Channel
Covariance matrix adaptation evolution strategy - пример того, как делать ресёрч для людей, а не начальства

Две недели назад я говорил про базовый алгоритм из семейства Evolution Strategies. Сегодня мы посмотрим на CMA-ES - его улучшенную версию.

Область применения всё ещё та же - у нас есть пространство параметров и функция качества, которую мы хотим оптимизировать. Доступа к производным нет.

Базовый алгоритм сэмплировал нормальные шумы с фиксированной дисперсией и накладывал их на текущее значение параметров, получая новые точки, в которых оценивалась награда и с помощью которых вычислялась оценка градиента по параметрам в текущей точке.

CMA-ES двигается дальше. Он переходит от фиксированной дисперсии нормального шума к полноценной матрице ковариаций, вводя в алгоритм межпараметрное взаимодействие.

После того, как мы засэмплировали N шумов и посчитали качество итоговых точек, мы пересчитываем матрицу ковариации нормального шума таким образом, чтобы максимизировать вероятность выпадения тех шумов, которые привели к более высоким наградам.

Таким образом, мы "обучаем" направление эволюционного поиска. Автор утверждает, что это можно интерпретировать как Natural Gradient Descent - метод оптимизации второго порядка.

Второе улучшение, вводимое в алгоритм, заключается в использовании некоторого рода "моментов", называемых тут Evolution Paths. Очевидно, если мы много итераций подряд двигаем какой-то параметр в одну и ту же сторону, это значит, что нам можно начать двигаться быстрее в эту сторону.

Алгоритм математически нагруженный. Полностью разобраться в его устройстве за короткое время, в отличие от базового ES, не представляется возможным. Именно в таких обстоятельствах автор алгоритма - Nikolaus Hansen - поворачивается к человечеству лицом.

Он мог бы опубликовать свою статью на глубоко уважаемой научной конференции, получить премию и забить хер, но вместо этого предоставил людям все инструменты для того, чтобы результаты его труда можно было использовать.

У алгоритма есть читаемая статья на вики, статья-туториал, страница с практическими подсказками и ссылками на реализации алгоритма на 8 языках, в том числе живой питон-репозиторий с кучей документации и элементарными примерами использования.

Несмотря на очень сложный алгоритм, автор сделал всё, чтобы даже такая обезьяна, как я, смогла без каких-либо проблем использовать его для решения своей задачи.

Я не знаю, каким образом и почему спустя почти 30 лет после изобретения алгоритма автор продолжает всем этим заниматься. Испытываю глубочайшее уважение к такому подходу к ресёрчу, в отличие от современного "высрал и забыл".

У CMA-ES ещё к 2009-му накопился список из более чем сотни применений. Данный алгоритм и сегодня используется как один из бейзлайнов в своей области применения, хоть и не является SOTA. Учитесь, салаги.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/263
Create:
Last Update:

Covariance matrix adaptation evolution strategy - пример того, как делать ресёрч для людей, а не начальства

Две недели назад я говорил про базовый алгоритм из семейства Evolution Strategies. Сегодня мы посмотрим на CMA-ES - его улучшенную версию.

Область применения всё ещё та же - у нас есть пространство параметров и функция качества, которую мы хотим оптимизировать. Доступа к производным нет.

Базовый алгоритм сэмплировал нормальные шумы с фиксированной дисперсией и накладывал их на текущее значение параметров, получая новые точки, в которых оценивалась награда и с помощью которых вычислялась оценка градиента по параметрам в текущей точке.

CMA-ES двигается дальше. Он переходит от фиксированной дисперсии нормального шума к полноценной матрице ковариаций, вводя в алгоритм межпараметрное взаимодействие.

После того, как мы засэмплировали N шумов и посчитали качество итоговых точек, мы пересчитываем матрицу ковариации нормального шума таким образом, чтобы максимизировать вероятность выпадения тех шумов, которые привели к более высоким наградам.

Таким образом, мы "обучаем" направление эволюционного поиска. Автор утверждает, что это можно интерпретировать как Natural Gradient Descent - метод оптимизации второго порядка.

Второе улучшение, вводимое в алгоритм, заключается в использовании некоторого рода "моментов", называемых тут Evolution Paths. Очевидно, если мы много итераций подряд двигаем какой-то параметр в одну и ту же сторону, это значит, что нам можно начать двигаться быстрее в эту сторону.

Алгоритм математически нагруженный. Полностью разобраться в его устройстве за короткое время, в отличие от базового ES, не представляется возможным. Именно в таких обстоятельствах автор алгоритма - Nikolaus Hansen - поворачивается к человечеству лицом.

Он мог бы опубликовать свою статью на глубоко уважаемой научной конференции, получить премию и забить хер, но вместо этого предоставил людям все инструменты для того, чтобы результаты его труда можно было использовать.

У алгоритма есть читаемая статья на вики, статья-туториал, страница с практическими подсказками и ссылками на реализации алгоритма на 8 языках, в том числе живой питон-репозиторий с кучей документации и элементарными примерами использования.

Несмотря на очень сложный алгоритм, автор сделал всё, чтобы даже такая обезьяна, как я, смогла без каких-либо проблем использовать его для решения своей задачи.

Я не знаю, каким образом и почему спустя почти 30 лет после изобретения алгоритма автор продолжает всем этим заниматься. Испытываю глубочайшее уважение к такому подходу к ресёрчу, в отличие от современного "высрал и забыл".

У CMA-ES ещё к 2009-му накопился список из более чем сотни применений. Данный алгоритм и сегодня используется как один из бейзлайнов в своей области применения, хоть и не является SOTA. Учитесь, салаги.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/263

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Knowledge Accumulator from id


Telegram Knowledge Accumulator
FROM USA